Missing data from mesothelioma study
نویسندگان
چکیده
منابع مشابه
Missing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملExtracting Assumptions from Missing Data
Information integration is the task of aggregating data from multiple heterogeneous data sources. The understandings of context knowledge of data sources are often the keys to challenging problems in information integration such as handling missing and inconsistent data. Context logic provides a unified framework for the modeling of data sources; nevertheless, the acquisition of large amounts o...
متن کاملA blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)
Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...
متن کاملWhat is missing from my missing data plan?
U nder the intention-to-treat principle, all randomized subjects should be analyzed according to their randomly assigned treatment, regardless of treatment actually received or protocol compliance. Adherence to this principle requires that even subjects with missing outcome data be included in the analysis; in fact, the exclusion of such subjects can have important implications on power and bia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Thoracic and Cardiovascular Surgery
سال: 2003
ISSN: 0022-5223
DOI: 10.1067/mtc.2003.244